首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   93篇
  免费   3篇
  国内免费   33篇
航空   88篇
航天技术   13篇
综合类   27篇
航天   1篇
  2023年   1篇
  2022年   1篇
  2021年   3篇
  2020年   1篇
  2019年   2篇
  2016年   6篇
  2015年   3篇
  2014年   2篇
  2013年   3篇
  2012年   6篇
  2011年   7篇
  2010年   6篇
  2009年   8篇
  2008年   6篇
  2007年   9篇
  2006年   5篇
  2005年   5篇
  2004年   4篇
  2003年   5篇
  2002年   4篇
  2001年   4篇
  2000年   7篇
  1999年   6篇
  1998年   4篇
  1997年   5篇
  1996年   1篇
  1995年   2篇
  1994年   3篇
  1993年   2篇
  1991年   1篇
  1990年   1篇
  1989年   4篇
  1988年   2篇
排序方式: 共有129条查询结果,搜索用时 15 毫秒
81.
在南航非定常风洞中,运用动态测力、测压和流动显示技术,详细研究了非定常自由来流对静态三角翼气动特性的影响和三角翼背风面空间流场结构的变化.研究结果表明,在不同攻角下,随来流速度的脉动三角翼气动特性产生的变化不同.非定常自由来流对静态三角翼气动特性产生的影响,主要是由于来流风速的变化对三角翼上翼面的流动结构产生的影响所造成,特别是在静态失速攻角前后,这种影响最为明显,它使原先翼面上的破碎涡流变成了集中涡流.  相似文献   
82.
孟宣市  乔志德  高超  罗时钧  刘锋 《航空学报》2009,30(12):2295-2300
 对细长平板三角翼及其对称面上加低背鳍组合体在低速风洞进行了二维粒子图像测速(PIV)实验,三角翼后掠角为82.5°,背鳍当地高度与三角翼当地半展长的比值为0.6,实验迎角为30°,无侧滑角,基于三角翼根弦长的雷诺数为2.33×106。实验结果表明:单独细长平板三角翼分离涡流场对称、定常;加上背鳍后,组合体分离涡流场变得定常、非对称和非锥型。实验结果证实了低高度背鳍对细长平板三角翼分离涡的稳定性起着削弱和破坏的作用,初步验证了前人关于细长锥体分离涡的稳定性理论,并给出了30°迎角下分离涡失稳后的具体表现特性。  相似文献   
83.
张伟伟  叶正寅 《航空学报》2009,30(12):2263-2268
大迎角三角翼的前缘涡不仅可以改善其气动力特性,也会显著影响机翼的气动弹性特性。运用基于Euler方程的非定常气动力降阶模型(ROM)方法,耦合结构运动方程,在状态空间内建立了气动弹性分析模型,研究了70°削尖三角翼的大迎角颤振特性。研究结果显示前缘涡对该机翼颤振特性的影响不可忽略。颤振速度随迎角的增加而大幅降低,迎角α=20°时的颤振速度比α=0°时降低了22%。发现了颤振特性随迎角变化时出现的不连续现象,并揭示了该现象是由于系统颤振分支随着静态迎角的增加发生转移所致。  相似文献   
84.
大后掠翼前缘涡对其颤振特性的影响   总被引:1,自引:1,他引:0  
大迎角三角翼的前缘涡不仅可以改善其气动力特性,也会显著影响机翼的气动弹性特性.运用基于Euler方程的非定常气动力降阶模型(ROM)方法,耦合结构运动方程,在状态空间内建立了气动弹性分析模型,研究了70°削尖三角翼的大迎角颤振特性.研究结果显示前缘涡对该机翼颤振特性的影响不可忽略.颤振速度随迎角的增加而大幅降低,迎角α=20°时的颤振速度比α=0°时降低了22%.发现了颤振特性随迎角变化时出现的不连续现象,并揭示了该现象是由于系统颤振分支随着静态迎角的增加发生转移所致.  相似文献   
85.
为了研究三角翼后缘对称喷流对前缘涡破裂位置和旋涡结构的影响,通过高分辨率的N-S方程数值模拟方法,对60°后掠角三角翼后缘有对称喷流及无喷流情况下的绕流进行了研究.结果表明,后缘喷流速度与自由来流速度之比影响前缘涡破裂的位置.与无喷流情况相比,喷流与来流速度比的不同造成了涡破裂的提前或推后.而与传统结论有所不同的是,并非所有的后缘喷流都能延迟涡的破裂.另外,后缘对称喷流对涡轴位置的影响很小.后缘对称喷流不改变三角翼前缘涡横截面流动拓扑结构的变化规律,但影响极限环的扩张速度.   相似文献   
86.
《中国航空学报》2016,(5):1196-1204
The flow fields over a generic cranked double delta wing were investigated. Pressure and velocity distributions were obtained using a Pitot tube and a hot wire anemometer. Two different leading edge shapes, namely ‘‘sharp" and ‘‘round", were applied to the wing. The wing had two sweep angles of 55° and 30°. The experiments were conducted in a closed circuit wind tunnel at velocity 20 m/s and angles of attack of 5°–20° with the step of 5°. The Reynolds number of the model was about 2 ×10~5 according to the root chord. A dual vortex structure was formed above the wing surface. A pressure drop occurred at the vortex core and the root mean square of the measured velocity increased at the core of the vortices, reflecting the instability of the flow in that region. The magnitude of power spectral density increased strongly in spanwise direction and had the maximum value at the vortex core. By increasing the angle of attack, the pressure drop increased and the vortices became wider; the vortices moved inboard along the wing, and away from the surface; the flow separation was initiated from the outer portion of the wing and developed to its inner part. The vortices of the wing of the sharp leading edge were stronger than those of the round one.  相似文献   
87.
在低速实验中,应用激光片光源和CCD 摄像系统,对一装有“前端襟翼”和“前缘襟翼”的双襟翼74°后掠三角翼进行实时记录与流态显示的试验技术和图像的三维重建。在迎角0°~50°范围内,对双襟翼的偏角作不同匹配,研究机翼在定常和非定常的俯仰与滚转运动中出现的旋涡流态,以了解分离涡系发展、破裂和相互作用的演变,物理机理和双襟翼的控涡效果,并对所有显示图像进行分析  相似文献   
88.
非接触测量的PDPA系统在Φ3.2m风洞中进行双三角翼速度场试验中 ,采用随测量点位置的移动而进行粒子投放。三维的光路布置则是采用安装在风洞外移测架的横梁上。实验结果表明 ,粒子投放的方法和光路布置及测量是合理的。同时指出 :粒子的投放应该在x/d >45处 ,从而解决了在大型低速风洞中的粒子投放和光路布置问题  相似文献   
89.
本文以N-S方程和Hall涡核模型假设为基础,导出了描述湍流的涡核运动方程。利用差分计算方法,对三角翼前缘分离涡运动及其破碎特性进行了数值求解,分析了涡核流场的结构和各物理量的变化特性,反映了三角翼前缘分离涡运动及其破碎特性的实质,说明了湍流涡核方程能更有地模拟三角翼前缘分离涡运动和准确地确定涡核破碎位置,并得出了攻钐雷诺数对破碎位置的影响,计算结果与实验数据十分吻合。  相似文献   
90.
为了抑制三角翼前缘涡破裂的发生,研究了大攻角下(30°~50°)尖顶襟翼对70°三角翼前缘涡破裂的影响.在静态实验情况下,尖顶弯折对三角翼前缘涡破裂影响的参数有2个:尖顶襟翼弯折的角度及其长度.染色液流态显示结果表明:尖顶襟翼的向下弯折减小了靠近襟翼翼面的有效攻角,从而推迟了前缘涡破裂的发生,涡破裂位置随弯折角的变化呈非线性变化且弯折襟翼越长效果越好,α=35°时两个弯折组合的效果要比单个弯折的好.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号